```
TITLE Exercises and Activities in Basic Number Work. Series of
    Caribbean Volunteer Publications, No. 3.
INSTITUTION Voluntary Services Overseas, Castries (St. Lucia).
pUB DATE
NOTE
AVAILABLE FROM VSO Resource Centre, 317 Putney Bridge Road, London SW 15
    2PN, England, United Kingdom.
PUB TYPE Guides - Classroom - Teacher (052)
EDRS PRICE
DESCRIPTORS
IDENTIFIERS Caribbean
    MF01/PC03 Plus Postage.
    Addition; *Arithmetic; Division; Educational Strategies;
    Elementary Education; Foreign Countries; *Manipulative
    Materials; *Mathematics Activities; *Mathematics Curriculum;
    Multiplication; Professional Development; Student Attitudes;
    *Student Evaluation; Subtraction
```

ABSTRACT

This guide is a collection of ideas for mathematics activities which were assembled and tested by primary teachers. The activities supplement the teaching of basic numeracy and include topics such as algorithms, pyramids, magic squares, multiples, and number values. The guide is organized into four sections: (1) addition and subtraction; (2) multiplication and division; (3) exercises involving the four rules; and (4) word problems. Worksheets for each activity are also provided. (DDR)

```
********************************************************************************
*
Reproductions supplied by EDRS are the best that can be made from the original document.

\section*{Exercises and Activities in Basic Number Work}

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL
HAQ BEEN GRANTED AY

\section*{Series} of
Caribbean
Volunteer
Publications
U.S. DEPARTMENT OF EDUCATION Office of Educational Research and improvement EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)
This document has been reproduced as received from the person or organization originating it.
- Minor changes have been made to
improve reproduction quality.
- Points of view or opinions stated in this document do not necessarily represen official OERI position or policy

One of a series of publications produced by VSO volunteers in the Caribbean. Production funded by a grant from British Development Division, Caribbean.

Voluntary Services Overseas (VSO) is an independent British Charity which works to assist countries in the Caribbean, Africa, Asia and the Pacific to achieve their development aims and create a more equitable world. VSO volunteers work alongside people in poorer countries in order to share skills, build capabilities and promote international understanding and action.

\section*{Copyright VSO}

Reproduction unlimited for public and educational uses please acknowledge VJO series as source. No reproduction for commercial use without permission from VSO London.

Further copies are available, at cost of copying, from :

\author{
VSO Field Office \\ 73, Chaussee Road \\ P.O. Box 1359 \\ Castries \\ St. Lucia (Until December 1998 ) \\ VSO Resource Centre \\ 317, Putney Bridge Road \\ London \\ SW 15 2PN \\ England (From 1999 onwards)
}

\section*{ACKNOWLEDGEMENTS}

VSO would like to extend their appreciation and gratitude to the following people who have made this series of publications possible:
- British Development Division ( BDDC) for providing the funding for this series of rublications
- Volunteers and local colleagues contributing to production of publications.
- Organisation of Caribbean Overseas Development (OCOD) for assisting in the reproduction of these publications

Other publications in this series include:

Maths and Science
1. A Practical Workbook for CXC Biology
2. Data Analysis Questions for Science Subjects. A Resource Booklet
3. Exercises and Activities in Basic Number Work
4. Fractions. Activities and Exercises for Teaching Fractions in Secondary Schools
5. Lower School Maths. Lesson Plans and Activities for Ages \(7-9\) Years.
6. Maths and Science Bookiet
7. Teaching Directed Numbers at Secondary School Level
8. Teachers' Resource Material for Integrated Science. Ideas for Teaching Integrated Science in Secondary Schools.
9. Upper School Maths Lesson Plans and Activities for Ages 9-11 Years

\section*{Special Needs}
10. An Introduction to Children with Special Needs for Teachers in Mainstream Education
11. The Alpha Centre: A Special School for Special Children. A Curriculum Checklist for Special Educational Needs.

\section*{English Language and Literacy}

\title{
12. Language and Learning. A Practical Guide to Help with Planning your Early Childhood Programme.
}

\section*{13. Promoting Reading and Librarv Use in your School: A Resource Pack.}

\section*{14. Strategies for Improving Language Across the Curriculum. Ideas and Activities for Every Classroom.}
15. Your School Library. How it Works and How to Keep it Working.

\section*{Other}
16. Beekeeping. A practical Guide to Beekeeping.
17. Caribbean Copy Art. A Resource Book for Teachers to Copy.
18. Methodology in Music Education.
19. Organising Workshops. A Practical Guide.

Many of these publications derive from projects or workshops funded through VSO's Community Project Scheme - an initiative also funded by grant from British Development Division, Caribbean.

\section*{EXERCISES AND ACTIVITIES}

IN

\section*{BASIC NUMBER WORK}
1) Preface
2) Introduction
3) Exercises in Addition and Subtraction

Surns To .................. 20
6
Sums To .................. \(100 \quad 7\)
Find the Squares 8
Arithmogons 9
Pairs, Add Pairs, More Pairs 10
Number Plaits 13
Meandering \(\quad 14\)
Pyramids 15
Addition Crosses 17
Magic Squares and Circles 18
\(0-9\) Cards 26
Investigations 28
4) Multiplication and Division

Using Multiplication Tables/Grids 30
Round the Clock (x) 31
Speed Tests 32
Multiplication Crosses \(\quad ? 3\)
Multiplication Grids 34
\(0-9\) Cards ( \(x\) ) 35
Turn up the volume 36
Snakes \(\quad 36\)
Buzz 37
Table Codes \(\quad \vdots 7\)
Table Hangman \(\quad 38\)
Cover the Multiple 38
Round the Clock ( \(\div\) ) 39
\(0-9\) Cards \((\div) \quad 40\)
Calling Cards \(\quad+1\)
5) Exercises involving the 4 rules
\(1-9\) Cards 43
The answer is ......... 44
Cross Number 44
6) Word Problems
\[
\text { Word Search } 46
\]

Spelling Crossword \(\quad 47\)
Number Values \(\quad+8\)
Is this Possible +9
7) Conclusion +9
10) Answers. 751

This collection of ideas was assembled and tested by primary teachers at Rose Hall Government School and Chateaubelair Methodist School, North Leeward, St. Vincent, E. Caribbean.

Jan Dingley, V.S.O., worked with the teachers advising on ways of developing practical exercises and activities in the teaching of Mathematics.

Some of the ideas (or variations of them) have been used for many years, others have developed at meetings and workshops.

\section*{ACKNOWLEDGMENTS:}

Mr. B. Stapleton, Mr. R. Ferdinand, Mr. R. Chambers, Mr. R. Stapleton, Mr. V. Crooke of the Rose Hall Government School.
Mr. O. Charles, Mr. N. Allen, Mr. A. Charles, Mr. G. Hamilton, Mrs. L. Matthews of Chateaubelair Methodist School.
Shropshire Maths Centre, Shrewsbury, UK.
SMP Maths Scheme, Cambridge, UK.
Using Multiplication Tables, Peter Smith, Macmillan, UK.
Typing, design and Graphics by Mr. S. Jocelyn, Maths Teacher, Troumaca Ontario Secondary School.

\section*{NTRODUCTION}

This booklet contains exercises and activities (with answers) which will supplement the teaching of basic numeracy. Children need to be competent manipulating addition, subtraction, multiplication and division of numbers if they are to make any progress in mathematics i.e. if they are to develop a range of mathematical skills and competencies . Repetition can become boring - the value of repeating the same exercise daily will eventually have negative effect. However, children do need plenty of practice to acquire these skills how do we address this problem? ....... By providing a range of activities on the same topic.

It is hoped that the exercises in this booklet will enable teachers to move towards fulfilling this need. It is assumed that some of the basic principles have been taught and that teachers are looking for additional exercises to supplement the teaching of these basic skills. This is a resource book, dip into it, select appropriate material, modify the degree of difficulty to suit the class and extend your pupils' range of mathematical experiences.

We hope that you will find plenty of exercises to keep their motivation levels high.

\section*{ADDITION AND SUBTRACTION}

This section gives plenty of exercises and examples which provide plenty of practice at these two fundamental concepts. Use these exercises as part of a lesson, give them as a five minute puzzle, use them for homework exercises ....... all involve addition and/or subtraction, disguised in a variety of activities. Little preparation is required - most exercises can be copied from the blackboard.
Remember to vary the level of difficulty to suit the ability level of your class........ and don't be afraid to let the children make up their own examples to test their friends - it's all part of the mathematical experience which reinforces the concepts - and they are enjoying their maths whilst learning.

\section*{SUMS TO.....}

Cross out groups of numbers which add up to 20. (Groups can be of 2 or 3 numbers from any part of the grid)


List the groups on a separate sheet of paper.

Find groups of 3 next - door numbers which add to 100 . Ane ines may be horizontal, vertical or diagonal.
\begin{tabular}{|c|c|c|c|c|c|}
\hline 17 & 9 & 18 & 75 & 94 & 50 \\
\hline 81 & 47 & 96 & 55 & 5 & 40 \\
\hline 2 & 50 & 48 & 93 & 1 & 14 \\
\hline 47 & 25 & 45 & 33 & 36 & 44 \\
\hline 27 & 69 & 38 & 54 & 19 & 59 \\
\hline 26 & 71 & 59 & 37 & 4 & 48 \\
\hline
\end{tabular}

List each set of numbers that you find on a separate sheet of paper.

NB. Vary the numbers in both these 'sums to' grids to suit the ability level of the class.

\section*{FIND IHE SQUAKED}
\begin{tabular}{|c|c|c|c|c|}
\hline 2 & 6 & 1 & 4 & 3 \\
\hline 5 & 3 & 0 & 2 & 1 \\
\hline 1 & 1 & 4 & 5 & 2 \\
\hline 2 & 6 & 5 & 3 & 2 \\
\hline 3 & 4 & 2 & 1 & 4 \\
\hline
\end{tabular}

Find five other squares of four numbers which add up to 10 .

List the numbers on a separate sheet of paper.
e.g.

Complete the following 'arithmogons' in the same way.


Extension
Multiply the numbers in the squares.
\begin{tabular}{|l|l|l|l|l|}
3 & 7 & 2 & 4 & 1 \\
\hline 4 & 6 & 3 & 8 & 6 \\
\hline 1 & 8 & 4 & 5 & 3 \\
\hline 5 & 1 & 2 & 7 & 6 \\
\hline 5 & 9 & 7 & 4 & 2 \\
\hline
\end{tabular}

Look at horizontal and vertical PAIRS
\begin{tabular}{|l|l|l|l|l|}
\hline 3 & 7 & 2 & 9 & 1 \\
\hline 4 & 6 & 3 & 8 & 6 \\
\hline 1 & 8 & 4 & 5 & 3 \\
\hline 5 & 1 & 2 & 7 & 6 \\
\hline 5 & 9 & 7 & 4 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 6 & 3 \\
\hline
\end{tabular}

There are nine different PARS with a total of 9. Can you find them?
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
Find five different PAIRS with a total of 10 .
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)

ALL PAIR TOTALS can be found between 3 and 17 except two.

Which ones?
Create your own square and make up some questions like these.

\section*{PAIRS}
\begin{tabular}{|c|c|c|c|c|}
\hline 9 & 1 & 2 & 6 & 5 \\
\hline 6 & 7 & 2 & 9 & 3 \\
\hline 3 & 5 & 1 & 5 & 8 \\
\hline 9 & 6 & 6 & 3 & 3 \\
\hline 5 & 8 & 1 & 8 & 5 \\
\hline
\end{tabular}

Look at horizontal and vertical pairs.
\begin{tabular}{|l|l|l|l|l|}
\hline 9 & 1 & 2 & 6 & 5 \\
\hline 6 & 7 & 2 & 9 & 3 \\
\hline 3 & 5 & 1 & 5 & 8 \\
\hline 9 & 6 & 6 & 3 & 3 \\
\hline 5 & 8 & 1 & 8 & 5 \\
\hline
\end{tabular}\(\rightarrow\)\begin{tabular}{|c|c|}
\hline 2 & 9 \\
\hline
\end{tabular} SUM to 11

How many pairs sum to 8 ?
There are 2 vertical pairs that sum to 12
Can you find them?
All pair totals can be found between 3 and 15 except one.
Make your own square : can you make all the totals between 1 and 20 ?
\begin{tabular}{|l|l|l|l|l|}
\hline 3 & 6 & 6 & 1 & 3 \\
\hline 6 & 2 & 3 & 4 & 7 \\
\hline 1 & 3 & 1 & 1 & 3 \\
\hline 0 & 3 & 5 & 1 & 2 \\
\hline 4 & 2 & 5 & 5 & 6 \\
\hline
\end{tabular}

Cover a pair of numbers that adds up to 1 ，then a pair that adds up to 2 ，etc．
Continue up to a pair that adds up to 12 ．
One number is left．What is it？
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 10 & 5 & 11 & 8 & 2 & 4 & 5 \\
\hline 12 & 1 & 7 & 14 & 5 & 3 & 0 \\
\hline 11 & 0 & 4 & 2 & 7 & 9 & 8 \\
\hline 9 & 5 & 8 & 8 & 7 & 2 & 2 \\
\hline 9 & 1 & 17 & 14 & 1 & 1 & 7 \\
\hline 5 & 7 & 5 & 10 & 8 & 4 & 3 \\
\hline 6 & 3 & 2 & 11 & 9 & 7 & 9 \\
\hline
\end{tabular}

Cover a pair that adds to 1 ，a pair that adds to 2 ，etc．The last pair to be covered will add to 24 ．

\section*{NUIVIBEK PLAID}


Complete these:
1.

3.


In questions 6,7,8,9 use all different numbers.
5.



\section*{MEANDERING}

Place the digits 1 to 9 on a 3 by 3 grid e.g.:


The dotted line shows the trail \(5+4+2+6+9=26\)
(Diagonal moves are not allowed and you can only visit a square once).
Find as many other trails as you can.
How many different totals are there?
Rearrange the numbers in the grid- What happens to the totals?

\section*{PYRAMIDS}

Here is an addition pyramid.

(1) Draw pyramids that start with:
(a) \(1,2,3\)
(b) \(3,5,9\)
(c) \(5,10,15\)
(d) \(10,20,30\)
(e) \(8,16,11\)
(f) \(26,19,32\)
(g) Make some with your own numbers.
(2) Copy and complete these pyramids:









(3) Draw and complete as many pyramids as you can with a middle row of:
(a)

(b)


(c)

(d)

(4) Try to draw 6 different pyramids for each of these top circles:-

100

NB These pyramids can be drawn on the blackboard for children to copy into their books. It may be easier to prepare stencils or handy sheets containing 'empty' pyramids. (Sorry, this is more work for the teacher but easier for the children).

\section*{ADDITION CRUSSES}
\begin{tabular}{l} 
Draw a cross like this. \\
You need not use a \\
ruler \\
\hline
\end{tabular}
\begin{tabular}{l}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Write 3,4 and 8 in the } \\
cross like this. \\
& \\
& 8 \\
\hline 3 & 8 \\
\hline & \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Do \(3+4\) and \(8+4\) Write the answers in the cross like this
\begin{tabular}{|c|c|}
\cline { 2 - 3 } & 8 \\
\hline 3 & 4 \\
\hline
\end{tabular}
1. Copy these crosses and fill in the missing numbers.
(a)

(b)
\begin{tabular}{|l|l|}
\cline { 2 - 3 } & 3 \\
\hline 9 & 4 \\
\hline & \\
\hline
\end{tabular}
(c)

2. Copy these crosses.

Work out the missing numbers and fill them in.
(a)

(b)

(c)


Not 23!
3. Copy these crosses and fill in the missing numbers.
(a)

(b)

(c)

(d)

(e)

(f)

(4) Draw empty crosses and fit these numbers in:
(a) \(8,13,5,2,7\)
(b) \(18,7,6,1,12\)
(c) \(7,16,9,10,3\)
(d) \(18,8,6,2,24\)
(e) \(31,9,16,25,15\)

\section*{MAGIC SQUARES}

Look at this
'nine-square' puzzle.
\begin{tabular}{|c|c|c|}
\hline 5 & 3 & 8 \\
\hline 6 & 4 & 10 \\
\hline 11 & 7 & 18 \\
\hline
\end{tabular}

Across
\[
\begin{aligned}
5+3 & =8 \\
6+4 & =10 \\
11+7 & =18
\end{aligned}
\]

Down
\[
\begin{array}{rccc}
5 & 3 & 8 \\
+6 & & +4 & +10 \\
\hline 11 & & & \\
\hline
\end{array}
\]
1) Copy and finish each of these nine-square puzzles.
(a)
\begin{tabular}{|l|l|l|}
\hline 7 & 8 & \\
\hline 5 & 3 & \\
\hline & & \\
\hline
\end{tabular}
(b)
\begin{tabular}{|l|l|l|}
\hline & 6 & 14 \\
\hline 3 & & \\
\hline & 9 & \\
\hline
\end{tabular}
(c)
\begin{tabular}{|c|c|c|}
\hline 6 & & \\
\hline & & 21 \\
\hline & 13 & 30 \\
\hline
\end{tabular}
(d)
\begin{tabular}{|l|l|l|}
\hline & 8 & \\
\hline & 9 & 12 \\
\hline & & 20 \\
\hline
\end{tabular}
(e)
\begin{tabular}{|c|c|c|}
\hline 11 & & \\
\hline & 15 & \\
\hline 14 & & 37 \\
\hline
\end{tabular}
(f)
\begin{tabular}{|c|c|c|}
\hline & & 16 \\
\hline 14 & & \\
\hline & 16 & 30 \\
\hline
\end{tabular}
(g)
\begin{tabular}{|l|l|l|}
\hline & & 10 \\
\hline 21 & & \\
\hline 29 & 13 & \\
\hline
\end{tabular}
(h)
\begin{tabular}{|l|l|l|}
\hline & 7 & 13 \\
\hline & 2 & 18 \\
\hline & & \\
\hline
\end{tabular}
(I)
\begin{tabular}{|l|l|l|}
\hline & & 0 \\
\hline & 0 & \\
\hline 0 & & \\
\hline
\end{tabular}
2) Make your own nine-square puzzles.

\section*{Magic squares}

Complete the following ' magic squares' :
(Each row, column and diagonal must add to give the same total).
1)
\begin{tabular}{|c|c|c|c|}
\hline 7 & 12 & 1 & \\
\hline & 13 & & 11 \\
\hline 16 & & 10 & \\
\hline 9 & 6 & & 4 \\
\hline
\end{tabular}
2)
\begin{tabular}{|c|c|c|c|}
\hline 6 & 13 & & 17 \\
\hline 19 & 16 & & \\
\hline & 10 & 21 & \\
\hline 20 & 15 & & \\
\hline
\end{tabular}
3)
\begin{tabular}{|c|c|c|c|}
\hline 16 & 3 & & 13 \\
\hline 5 & 10 & & \\
\hline & 6 & 7 & \\
\hline & & 14 & 1 \\
\hline
\end{tabular}
4)
\begin{tabular}{|c|c|c|c|}
\hline 1 & 8 & & 12 \\
\hline 14 & 11 & & \\
\hline & 5 & 16 & \\
\hline 15 & 10 & & \\
\hline
\end{tabular}
5)
\begin{tabular}{|c|c|c|c|}
\hline 16 & 2 & & 13 \\
\hline & 11 & & \\
\hline 9 & 7 & 6 & 12 \\
\hline & & 15 & \\
\hline
\end{tabular}

\section*{Extension:}

Let the students make their own magic squares.
Challenge: Find the magic number
Complete the magic square.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 5 & 46 & 15 & 56 & 25 & 66 & 35 & & 45 \\
\hline 54 & 14 & & 24 & 65 & & 75 & 44 & 4 \\
\hline 13 & 63 & 23 & & 33 & 74 & 43 & 3 & \\
\hline 62 & & & 32 & & 42 & 2 & 52 & 12 \\
\hline 21 & 71 & 31 & 81 & 41 & & 51 & 11 & 61 \\
\hline 70 & & 80 & 40 & 9 & 50 & & 60 & 20 \\
\hline 29 & 79 & 39 & 8 & 49 & & 59 & 19 & 69 \\
\hline & 38 & 7 & 48 & & 58 & 27 & 68 & \\
\hline 37 & 6 & 47 & 16 & 57 & 26 & & & 77 \\
\hline
\end{tabular}


EXAMPLE \(\longrightarrow\)
Write the numbers from 1 to 9 in the boxes of each puzzle to match the row and column totals. Some clues are given:
\begin{tabular}{|l|l|l|l|}
\hline 7 & 3 & 4 & 14 \\
\hline 1 & 5 & 9 & 15 \\
\hline 6 & 8 & 2 & 16 \\
\hline
\end{tabular}
1)
\begin{tabular}{|l|l|l|}
\hline & & \\
\hline & 2 & \\
\hline & & \\
\hline 20 & 6 & 19
\end{tabular}







Try them on scrap paper first.
Invent some similar puzzles using numbers 6 to 14 .

\section*{MAGIC SQUARES}

\begin{tabular}{|c|c|c|c|c|}
\hline & 15 & & 23 & \\
\hline 18 & & 25 & & 5 \\
\hline & 1 & 30 & 4 & \\
\hline 27 & & 2 & & 6 \\
\hline & 11 & & 29 & \\
\hline \multicolumn{4}{|c|}{\begin{tabular}{c}
\(3-8-12-13-21\) \\
\(22-26-28-30\).
\end{tabular}} \\
\hline
\end{tabular}

Now try this one.
Only one number has been put in this time.
All the rows and columns must add up to 82 again.

\section*{Consecutive 50's}

In the grids below:
1. Any four consecutive numbers in a row total 50
2. Any four consecutive numbers in a column total 50
3. Any four consecutive numbers in a diagonal line total 50
4. The four numbers in a \(2 \times 2\) square total 50 .

Complete the grids.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 11 & 16 & & 18 & 11 & 16 & & 18 \\
\hline 6 & & 12 & 15 & 6 & & 12 & 15 \\
\hline 20 & & 14 & & 20 & 7 & 14 & 9 \\
\hline & 10 & 19 & & & 10 & 19 & \\
\hline 11 & 16 & 5 & & 11 & & & 18 \\
\hline 6 & & 12 & 15 & & 17 & & 15 \\
\hline 20 & 7 & 14 & & 20 & & 14 & 9 \\
\hline 13 & 10 & & 3 & & 10 & 19 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 18 & & 9 & 8 & & 15 & 9 & 8 \\
\hline 5 & 12 & & 19 & 5 & & 14 & 19 \\
\hline & & 7 & 10 & 16 & & 7 & 10 \\
\hline 11 & 6 & & & 11 & & & \\
\hline & 15 & & 8 & & 15 & 9 & 8 \\
\hline 5 & 12 & 14 & & & 12 & 14 & 19 \\
\hline 16 & & 7 & 10 & 16 & & 7 & \\
\hline 11 & 6 & & 13 & 11 & & & 13 \\
\hline
\end{tabular}

Extensions:
(1) Let the students make their own grids.
(2) Use different totals.

\section*{CONSECUTIVE 50'S}

Any four consecutive numbers in a vertical, horizontal or diagonal straight line, total 50.
Any four numbers in a \(2 \times 2\) square total 50 .
Complete the block:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 11 & 18 & & 6 & 11 & 18 & & 6 & 11 & 18 & 15 & 6 & 11 & 18 & 15 & 6 \\
\hline 16 & 5 & & 17 & 16 & & 12 & 17 & 16 & & & 17 & & 5 & 12 & 17 \\
\hline 10 & & 14 & 7 & & 19 & 14 & 7 & & 19 & 14 & 7 & & 19 & & 7 \\
\hline & 8 & 9 & & 13 & 8 & & 20 & & & 9 & 20 & 13 & & 9 & \\
\hline 11 & 18 & & & 11 & 18 & 15 & 6 & 11 & 18 & 15 & & 11 & 18 & 15 & 6 \\
\hline 16 & 5 & & 17 & 16 & 5 & & & 16 & 5 & & 17 & & 5 & 12 & 17 \\
\hline & & 14 & 7 & & 19 & 14 & 7 & & 19 & & 7 & 10 & 19 & 14 & \\
\hline 13 & 8 & & 20 & 13 & 8 & 9 & 20 & & 8 & 9 & 20 & 13 & & 9 & 20 \\
\hline & 18 & 15 & & 11 & & 15 & 6 & 11 & 18 & 15 & & 11 & 18 & 15 & 6 \\
\hline 16 & 5 & 12 & & 16 & 15 & & 17 & & & & 17 & 16 & 5 & 12 & \\
\hline 10 & & 14 & & 10 & 19 & & 7 & 10 & & & 7 & & & & 7 \\
\hline & 8 & 9 & 20 & & 8 & 9 & 20 & & 8 & 9 & 20 & 13 & 8 & 9 & \\
\hline 11 & 18 & 15 & 6 & 11 & & & 6 & 11 & 18 & & 6 & & 18 & 15 & 6 \\
\hline 16 & 5 & 12 & & 16 & 5 & 12 & & 16 & & & 17 & 16 & 5 & & 17 \\
\hline & & 14 & 7 & & 19 & 14 & 7 & & 19 & 14 & & & & 14 & \\
\hline 13 & 8 & & 20 & 13 & & 9 & 20 & & 8 & 9 & 20 & & 8 & 9 & 20 \\
\hline
\end{tabular}


Put the numbers \(1,2,3,4,5\) and 6 into the squares so that the numbers on each circle add up to the same amount. When this happens the circles are said to be magic.

How many different ways are there of doing this?

\section*{Magic Circles (2)}


In this diagram there are four circles.
Use the numbers 1 to 12 to make them into Magic Circles.

These activities can be led by the teacher with the whole class taking part. In this case, write the digits \(0,1,2,-\quad 9\) on the blackboard and cross them off as they are used. Each digit should be used only once in finding solutions to these exercises.

Alternatively, let the children work individually (or in pairs or groups) solving the problems. In this case, each child will need a set of digits these do not need to be elaborate - cut squares of paper.

Ideally, all work should be written into the children's exercise books.


Use all the 10 cards and find:
2 cards that add to 16
2 cards that add to 14
2 cards that add to 2
2 cards that add to 9
2 cards that add to 4
Cards that add to \(7,8,9,10\) and 11
Try using 2,3 or 4 cards to make the totals.

\section*{0-9}

\section*{Cards}

\section*{Draw the grids}

Place the cards in the squares to make row and column totals correct :


Try some of your own.

Choose 4 cards from the set.
Use some or all of the cards to make totals from 1 to 20 - use any signs.
e.g.. \(4+2+1=7\)
\[
4+2-1=5
\]

Try making totals from 21 to 50 , or 100 !

\section*{INVESTIGATIONS}

Summing up.


Put the digits \(1,1,2,3,3,4,5,6\)
into the boxes to make four
two - digit numbers.
Add. What different totals are possible?

Taking away

Put the digits \(1,4,7\) and 9
into the boxes to make two
two - digit numbers. The top
 number needs to be larger. than the bottom number.
How many different answers are possible?

Nearest to 10.

Select 4 cards. You can combine the 4 digits using addition and or subtraction. Who can obtain a total nearest to 10? 15? 20?
\[
\begin{array}{ll}
\text { e.g. } & 2.4 .6 .3 \\
& 4+6 \div 3-2=11
\end{array}
\]

\section*{MULTIPLICATION}

\section*{AND}

DIVISION

\section*{MULTIPLICATION AND DIVISION}

Most of these exercise give practice at tables. Basic drill is essential to build up an understanding of multiplication and to develop speed and accuracy.

The activities shown here provide additional 'fun' ways of 'drilling' tables which will keep children's motivation high.

One further activity ( not mentioned in this section) is singing - choose rhythm or familiar tune and sing through the tables. Children love this!

\section*{MULTIPLICATION TABLES}

Children often have copies of their tables on the covers of their maths books. A useful exercise is to ask children to draw the grid below, mount it on card and use it to answer 'tables questions' until they become familiar with them.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline x & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline 2 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 \\
\hline 3 & 3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 & 27 & 30 & 33 & 36 \\
\hline 4 & 4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40 & 44 & 48 \\
\hline 5 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 & 55 & 60 \\
\hline 6 & 6 & 12 & 18 & 24 & 30 & 36 & 42 & 48 & 54 & 60 & 66 & 72 \\
\hline 7 & 7 & 14 & 21 & 28 & 35 & 42 & 49 & 56 & 63 & 70 & 77 & 84 \\
\hline 8 & 8 & 16 & 24 & 32 & 40 & 48 & 56 & 64 & 72 & 80 & 88 & 96 \\
\hline 9 & 9 & 48 & 27 & 36 & 45 & 54 & 63 & 72 & 81 & 90 & 99 & 108 \\
\hline 10 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 & 110 & 120 \\
\hline 11 & 11 & 22 & 33 & 44 & 55 & 66 & 77 & 88 & 99 & 110 & 121 & 132 \\
\hline 12 & 12 & 24 & 36 & 48 & 60 & 72 & 84 & 96 & 108 & 120 & 132 & 144 \\
\hline
\end{tabular}

Make a large table for the classroum wall for constant reference.
NB. This chart is also useful when discussing factors and multiples.

\section*{MULTIPLICATION TABLES}

The following multiplication grid has got mixed up. Try to fill it in. To help you get started a few have been done for you.


It is useful to have squared paper so that these exercises can be repeated as frequently as necessary. If not. draw the grid on a stencil and print as many copies as possible.

The level of difficulty should be varied to match the ability of the children.

\section*{ROUND THE CLOCK MULTIPLICATION}

Tables: A few minutes drill each day is more valuable than half an hour once a week.
Draw a clock face on the blackboard with the numbers in random order. Drill the children round the clock in either direction, starting at any number.


These sheets could be duplicated; or make se display the questions on the blackboard / wall ( children will practice if the questions are ctis
\(g\) strips of paper and classroom - test frequently displayed).

NAME:
\begin{tabular}{lr}
\(6 \times 8=\) & \\
\(5 \times 9=\) & \(=\) \\
\(8 \times 9=\) & \(;=\) \\
\(7 \times 6=\) & \(;=\) \\
\(4 \times 4=\) & \(7=\) \\
\(5 \times 6=\) & \(9 \times 7=\) \\
\(6 \times 4=\) & \(5 \times 4=\) \\
\(3 \times 7=\) & \(9 \times 6=\) \\
\(7 \times 10=\) & \(5 \times 7=\) \\
\(0 \times 5=\) & \(8 \times 4=\) \\
\(9 \times 6=\) & \(3 \times 8=\) \\
\(6 \times 3=\) & \(5 \times 9=\) \\
\(5 \times 3=\) & \(6 \times 7=\) \\
\(6 \times 6=\) & \(5 \times 6=\) \\
\(0 \times 9=\) & \(9 \times 8=\) \\
\(7 \times 7=\) & \(8 \times 7=\) \\
\(1 \times 8=\) & \(9 \times 4=\) \\
\(4 \times 9=\) & \(7 \times 7=\) \\
\(8 \times 7=\) & \(4 \times 5=\) \\
\(2 \times 9=\) & \(6 \times 9=\) \\
\(5 \times 8=\) & \(5 \times 5=\) \\
\(9 \times 5=\) & \(8 \times 3=\) \\
\(7 \times 6=\) & \(7 \times 8=\) \\
\(4 \times 9=\) & \(9 \times 3=\)
\end{tabular}

\section*{MULTIPLICATION CROSSES} Here is a multiplication cross.
\begin{tabular}{|c|c|c|}
\cline { 2 - 3 } \multicolumn{1}{l|}{} & 5 & \\
\hline 2 & 3 & 6 \\
\hline & 15 & \\
& &
\end{tabular}

The rules are
Left-hand number x Middle number \(=\) Right-hand number
\[
\text { Top number } \mathrm{x} \text { Middle number = Bottom number }
\]
1) Copy and finish these multiplication crosses.
(a)

(b)

(c)
\begin{tabular}{|c|c|}
\cline { 2 - 2 } \multicolumn{1}{l|}{} & 5 \\
\hline 6 & \\
\hline & 20 \\
\hline
\end{tabular}
(d)

(e)

(f)

(g)

(h)

(I)

2) Draw multiplication crosses with these numbers in them:
(a) 4.2.10.5.20
(b) \(3,6.2,18.12\)
(c) 28.2.8.4.7
(d) \(3.30 .15 .5,6\)
(e) 4.40 .24 .6 .10
(f) 3.2 .0 .0 .0

\section*{MULTIPLICATION GRIDS}

Here is a multiplication grid. Make sure you understand how it was put together before you go on.
\begin{tabular}{c|ccc}
X & 3 & 4 & 8 \\
\hline 2 & 6 & 8 & 16 \\
5 & 15 & 20 & 40 \\
7 & 21 & 28 & 56
\end{tabular}

Some of the numbers in these multiplication grids are missing. Copy and complete the grids.
1.
\begin{tabular}{c|ccc}
\(\mathbf{x}\) & \(\mathbf{2}\) & 4 & 6 \\
\hline 2 & 4 & 8 & \(?\) \\
5 & \(?\) & 20 & 30 \\
4 & 8 & 16 & 24
\end{tabular}
\begin{tabular}{c|ccc}
\(\mathbf{x}\) & 5 & 3 & 4 \\
\hline 2 & \(?\) & 6 & 8 \\
1 & 5 & \(?\) & 4 \\
7 & 35 & 21 & \(?\)
\end{tabular}
5.
\begin{tabular}{c|cc}
x & 2 & \(?\) \\
\hline\(?\) & 6 & 12 \\
5 & 10 & 20
\end{tabular}
7.
\begin{tabular}{c|ccc}
x & \(?\) & 3 & \(?\) \\
\hline\(?\) & 2 & \(?\) & 7 \\
\(?\) & 4 & 6 & \(?\) \\
\(?\) & 10 & \(?\) & \(?\)
\end{tabular}
9.
\begin{tabular}{c|cc}
x & \(?\) & \(?\) \\
\hline\(?\) & 9 & 21 \\
\(?\) & \(?\) & 49
\end{tabular}

\section*{0-9 \\ Cards}

Arrange the 10 cards to make:
5 numbers which are multiples of 2
6 numbers which are multiples of 3
5 numbers which are multiples of 7
\[
\text { e.g. } 42=6 \times 7
\]

Select a number e.g. 4
Make as many multiples if 4 as possible using the cards. i.e..


Repeat with different numbers.
Use the \(12 \times 12\) multiplication table to look for multiples of 4 .

\section*{TURN UP THE VOLUME}
1) Split the class into groups, each with a leader.
2) Whole class chants a table - but - only one group makes a sound, the other groups mime the words.
3) The leader of the group making the sounds signals another group to "turn up the volume" while the first group turns the volume down.
4) Any group which fails to "turn up the volume" is out of the game and can mime from then on.
5) The winning group(s) will be the one(s) who know their tables the best!

NB Switch to a different table part way through the game to extend the testing of tables.

\section*{SNAKES \\ (or Top To Tail)}

Children stand in one long line around the classroom. One end of the line is the "head" the other is the "tail".

Start at the "head" and ask each child a question from the multiplication tables. If the child answers the question correctly (s)he stavs in the same position. If an incorrect answer is given then that child moves to the "tail" and everyone else moves closer to the "head".

Repeat for a few minutes each day, once a week etc. - children will usually remember their positions (but it may be worth making a list).

\section*{NB.}

With large classes line the children up into 2 or 3 "snakes" and ask questions to each line in turn. This will give more children a chance to reach the "head" (and try to avoid being the "tail").

\section*{BUZZ}
1) Decide which multiplication table is to be practiced. e.g. 3 times tables.
2) Children count in ones, in turn, around the class, with everyone standing.
3) When the counting number is a multiple of the table number, the child says "BUZZ" instead of the number.
4) The next child says the number which is one more than the "BUZZ" number.
e.g.: 3 times table: children would recite:

1,2, BUZZ, 4,5, BUZZ, \(7,8, B U Z Z, 10,11, B U Z Z\), etc.
5) Any child making a mistake sits down. The winner is the last child to remain standing.

\section*{Extension: Fizz-Buzz}

Repeat the above exercise using a second table. Child says "BUZZ" for multiples of 3 , "FIZZ" for multiples of 5 , "FIZZ_BUZZ" for numbers which are multiples of both 3 and 5.
e.g.. 1, 2, BUZZ, 4, FIZZ, BUZZ, 7, 8, BUZZ, FIZZ, 11, BUZZ, 13, 14, FIZZ_BUZZ, 16 etc.

\section*{TABLE CODES}

Teachers need to set up a code which uses a multiple to represent each letter of the alphabet e.g.:
\begin{tabular}{|ccccccccccccc|}
\hline A & B & C & D & E & F & G & H & I & J & K & L & M \\
12 & 27 & 60 & 81 & 48 & 18 & 24 & 80 & 36 & 72 & 21 & 144 & 50 \\
N & O & P & Q & R & S & T & U & V & W & X & Y & Z \\
22 & 30 & 49 & 35 & 16 & 56 & 14 & 40 & 32 & 20 & 42 & 110 & 64 \\
\hline
\end{tabular}

The children copy out the following multiplications. work out the answer and then decode the message.
\begin{tabular}{|cccccc|ccc|ccc|c|}
\hline 2 & 3 & 9 & 12 & 6 & 8 & 6 & 4 & 4 & 2 & 4 & 2 & \\
x 7 & 4 & 3 & 12 & 8 & 7 & 2 & 4 & 12 & 9 & 10 & 11 & \\
\hline 14 & 12 & 27 & \(14+\) & & & & & & & \\
\hline T & A & B & & & & & & & & \(!\) \\
\hline
\end{tabular}
(1) Give the more frequently occurring letters numbers which have many factors so that it is easier to practice all sets of factors.
\begin{tabular}{|c|c|c|c|c|c|}
\hline 12 & 150 & 2 & 40 & 15 & 6 \\
\hline 30 & 96 & 50 & 27 & 4 & 36 \\
\hline 16 & 8 & 25 & 64 & 20 & 54 \\
\hline 45 & 120 & 18 & 3 & 75 & 125 \\
\hline 5 & 72 & 9 & 32 & 24 & 60 \\
\hline 80 & 48 & 90 & 10 & 100 & 216 \\
\hline
\end{tabular}

BEST COPY AVAILABLE
(2) Let children make up their own code message for others in the class to decode.

\section*{TABLE HANGMAN}

The teacher asks the class a series of tables questions. Each time they answer a question incorrectly, or too slowly, the teacher begins to build the gallows.


10 incorrect answers result in a "hanging"
NB. Children could work in pairs, testing each other, with each child building their own gallows.

\section*{COVER THE MULTIPLE}

This game gives practice at multiplication and can be played in groups. Each group needs to draw a grid of numbers:-
\begin{tabular}{|c|c|c|c|c|}
\hline 12 & 150 & 2 & 40 & 15 \\
\hline 30 & 96 & 50 & 27 & 4 \\
\hline 16 & 8 & 25 & 64 & 20 \\
\hline 45 & 120 & 18 & 3 & 75 \\
\hline 5 & 72 & 9 & 32 & 24 \\
\hline
\end{tabular}

Make each grid large enough so that the squares can be covered by counters or bottle tops.

\section*{Instructions:}
1) The child throws 3 dice and multiplies the numbers together. If the answer is shown he/she places a counter on the square containing the correct answer.
2) Each child in the group takes a turn.
3) The winner is the child with most counters on the board.

NB. A counter cannot go on a square which is already covered.

\section*{Extension:}

Each child throws 3 dice in turn but the first child to work out the answer can place a counter on the board.

NB. This game could be played with other operations e.g.. addition, subtraction ( 2 dice) and division (fractions) - devise boards with relevant numbers.

\section*{ROUND THE CLOCK DIVISION}

Draw a clock face on the blackboard with the numbers in random order. Drill the children, round the clock in either direction, starting at any number.


Change the numbers to drill other tables.

\section*{0-9 Cards}


Find different division sentences.

How many ways can be found to equal 3 .
Can you find two different sentences that equal \(18 ? \ldots \ldots \ldots\)

\title{
EXERCISES INVOLVING THE 4 RULES
}

\section*{CALLING CARDS}

The aim of this game is to speed up mental arithmetic and is played in groups (max. 13 pupils).

Instructions:-
1) Prepare a set of cards as shown:
\begin{tabular}{llllll|}
\hline \(70 \div 7\) & \(10 \times 12\) & \(120 \div 8\) & \(15 \times 6\) & \(\boxed{90 \div 10}\) & \(9 \times 14\) \\
\hline \(126 \div 3\) & \(42 \div 7\) & \(6 \times 14\) & \(84 \times 2\) & \(168 \div 3\) & \(56 \div 4\) \\
\hline \(14 \times 5\) & & & & &
\end{tabular}
2) Give all the cards out (some pupils may have more than one card).
3) One child starts and calls out the sum on their card and places the card on the desk.
4) The child whose card has the answer as the first number on their card puts their card on the desk and reads out the sum.
5) Continue until all the cards form a chain and the first number is reached again. (see order above!)
6) Make this competitive with the winners being the group who completes their chain of cards in the fastest time.

NB. Vary the degree of difficulty to match the ability of the children. Alternatively use addition and subtraction chains.

\section*{Extension}

Let the children make their own chains.

1-9
1) Choose any four cards from the set

Use some or all of the 4 numbers and any mathematical symbols - make all the totals from 1 to 20.
\[
\begin{array}{ll}
\text { e.g. } & 1+2+3+4=10 \\
& 1+2+3-4=2 \quad \text { etc. }
\end{array}
\]
2) Pick 3 cards, add 2 of the numbers and multiply the total by the 3rd number. Obtain a total as near to 20 as possible.
e.g. \((2+4) \times 3=18\)
\[
\begin{aligned}
& (4+3) \times 2=14 \\
& (3+2) \times 4=20
\end{aligned}
\]

Try to find different totals e.g.. \(15,30,40\), etc.
3) Make' a \(10 \times 10\) grid with numbers 1 to 100 .

Select 3 cards. Use any mathematical operation to combine the 3 numbers to make totals from 1 to 100 . Use the numbers once and only once.
\[
\text { e.g.. } 6+5+2=13
\]
\[
\begin{aligned}
& 6 \times(5+2)=42 \\
& (5 \times 2)-6=4 \\
& (6 \times 5) \div 2=15 \\
& 65-2=63
\end{aligned}
\]
etc.

\section*{The Answer Is -----}

Tell the class that the answer to a maths question is 10 .
Ask them to think of as many questions as possible which would give an answer of 10 .
e.g.. \(\quad 5+5=10\)
\[
100 \div 10=10 \quad \text { etc } .
\]

See who can get the longest list of questions! (It may be wise to restrict the questions to 2 digits and one operand).

Repeat the exercise with a different number.

\section*{Games and puzzles}

\section*{Cross number}


This cross number is small enough to be written on the blackboard.
Children could try making their own - let them work in groups.

\section*{WORD PROBLEMS}

IViatns wora searcn


\section*{SPELLING}

Fill in the spellings of the numbers 1 to 20 .
Use a dictionary if you want to.
Number 17 has been done for you.
\begin{tabular}{|c|l|c|l|}
\hline 1 & & 11 & \\
\hline 2 & & 12 & \\
\hline 3 & & 13 & \\
\hline 4 & & 14 & \\
\hline 5 & & 15 & \\
\hline 6 & & 16 & \\
\hline 7 & & 17 & SEVENTEEN \\
\hline 8 & & 18 & \\
\hline 9 & & 19 & \\
\hline 10 & & 20 & \\
\hline
\end{tabular}

Write all the number words is this word link.
Number 17 has been put in for you.


This is not as easy as it looks. Use a pencil and rubber.

\section*{NUMBER VALUES}

Use a set of cards numbered \(0,1,2\),
9. Can you make:
1) A number between 40 and 50
2). A number less than 30
3) A number greater than 90
4) A number greater then 20 , less than 25
5) A number 10 more than 33
6) A number in the 5 times tables
7) A number in the 3 times tables
8) A number in the "any" times tables
9) An even number between 20 and 30
10) An odd number between 50 and 55
11) A number that differs from 60 by 1
12) A number that differs from 70 by 2
13) Two consecutive 2 digit numbers
14) Two consecutive 2 digit odd numbers
15) Two consecutive 2 digit even numbers.

\section*{IS THIS POSSIBLE?}

Copy each of these "facts". Write 'YES' if it is possible , 'NO' if impossible.
1) Some months have 6 Mondays.
2) A van is more than 50 metres long.
3) A pencil weighs about 50 grams.
4) A baby weighs about 3 kg .
5) Some years have more than twelve months.
6) Some weeks have less than 8 days.
7) A kg of steel weighs more than a kg of feathers.
8) A rectangle can be larger than a square.
9) Some buildings are about a kilometre tall.
10) Some mountains are about a kilometre high.

\section*{CONCLUSION}

We hope that now you have reached this part of the booklet that you will have tried and tested some of the activities and found some useful exercises to use with your class.

We feel sure that the children are well motivated and are developing an interest in mathematics.

BEST COPY AVAILABLE
We hope that this resource book will encourage teachers to experiment with new ideas. Let us make maths lessons enjoyable - it is a subject which many children find difficult - many children are afraid of mathematics - let us try and turn it into a subject which they enjoy and look forward to. The earlier we build up their confidence the nearer they are to success.

\section*{ANSWERS}

ANSWERS
1) 'SUMS TO :

Possible groups: \(\quad 12+8,10+10,5+3-6+4+1\)
\[
\begin{aligned}
& 3+5+8+4,8+7+5,10+7+2+1,12+7+1, \\
& 13+6+1,11+7+2,14+5+1,14+6 \\
& 13+5+2,13+4+3,10+8=2,10+7+3 \\
& 10+6+4,10+6+3+1,(\text { ttc. }) \\
& 14+2+4,11+5+4,9+1+10,9+2+1+6,9+5+6, \\
& 6+4+7+3,12+6+2,12+5+3,11+9,11+8+1,11+6+3, \\
& 11+5+4
\end{aligned}
\]
2) 'SUMS TO': \(17+81+2,94+5+1,47+27+26,25+38+37,33+19+48\), 100 \(55+1+44,48+33+19\)
3) Find the

Squares
4) Arithmogons
\begin{tabular}{llllllllllll}
61 & 4 & 3 & 5 & 3 & 2 & 1 & 1 & 1 & 5 & 3 & 3
\end{tabular}
(1)

(2)

(3)

(4)

(5)

(6)

5) Pairs To 9:7+2,6+3,1+8,4+5,2+7,8 \(2 \quad 6 \quad 3\)
\[
\begin{array}{cccc}
+ & + & + & + \\
1 & 7 & 3 & 6
\end{array}
\]

To 10: 3+7, 9+1, 4+6, \(1 \quad 5\)
\[
+\quad+
\]
\[
95
\]
\[
(3)=1+2
\]
\[
(10)=9+1
\]
\[
(5)=4
\]
\[
(11)=7
\]
\[
\begin{array}{r}
+ \\
1
\end{array}
\]
\[
(6)=4
\]
\[
(12)=8+4
\]
\[
\text { No totals for } 4 \text { and } 15
\]
\[
\begin{array}{rlr}
+ & \\
2 & \\
(7)= & (13)=8 \\
3 & & \\
+ & \\
4 & \\
(8)= & \\
& + &  \tag{17}\\
2 & \\
(9)= & & \\
& & (16)=9+6
\end{array}
\]
\[
\begin{array}{ccc}
1 & 2 & 2 \\
+ & + & + \\
7 & 3 & 5
\end{array}
\]
\begin{tabular}{|c|c|}
\hline To 12: & 7 \\
\hline & + \\
\hline & 5 \\
\hline
\end{tabular}
\((10)=9+1\)
\((14)=9\)
(3) \(=1-2\)
\((7)=6\)
\((4)=2\)
\((8)=2+6\)
\((11)=2+9\)
(12) \(=9+3\)
(6) \(=1+5\)
\((9)=6\)
\((13)=5+8\)
\(+\)
3
7)
\((1)=1\)
+
0
\((5)=2\)
(9) \(=3\)
(2) \(=1 \div 1\)
(6) \(=4+2\)
\((10)=7\)
(3) \(=1+2\)
(7) \(=3+4\)
\((11)=5+6\)
\((4)=1+3\)
\((8)=3+5\)
\((12)=6 \div 6\)
8) MORE Let children check their own.

PAIRS
9) Number Plaits

\section*{\(114{ }^{5}\)}
(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

10) MEANDERING
\[
\begin{aligned}
& 5-1-3-6+9=24 \\
& 5-1-2 \div 6 \div 9=23 \quad \text { Rearranging }
\end{aligned}
\]
\[
5+1-2-8+9=25
\]

Combinations often remain
\[
5-4-2-6+9=26
\] the same - make sure children
\[
5-4-2-8+9=28
\] check this.
\[
5-4-7-8+9=33
\]
(lb) \(3^{\underline{8} \underline{\underline{8}}} 5^{\underline{14}} 9\)
(c)
(a) \(1^{\underline{3} \underline{8}} \underline{2}^{\underline{5}} 3\)

3
(e)

(f) \({ }_{26}^{\frac{45}{\underline{96}}} 19 \underline{51}\)


Make sure children investigate \(1 \mathrm{~g}, 3\) and 4.
12) Addition Crosses
\begin{tabular}{lll} 
1a) & 4 & \\
& 6 & 1 \\
7 & \(\underline{7}\) \\
& \(\underline{5}\) & \\
2a) & 6 & \\
& 3 & 10 \\
& 13 \\
& \(\underline{16}\) &
\end{tabular}
1b) 3
\(\begin{array}{lll}9 & 4 \\ \\ 7\end{array}\)
lc) \(\begin{array}{lll}5 & \\ 6 & 4 & 10 \\ & \underline{9} & \end{array}\)
2a) 6
\(3 \quad 10 \quad 13\)
2b) 9
\(\geq 68\)
15
2c) 4 \(12 \frac{6}{10} \quad 18\)

3a) \(\begin{array}{lll} & 6 & \\ 3 & 10 & 13 \\ & \underline{16} & \end{array}\)
\begin{tabular}{lll}
\(3 \mathrm{~b})\) & 3 & \\
10 & \(\frac{8}{8}\) & 18 \\
\hline & 11 &
\end{tabular}
3c) 1

3d) 27
3e) 23
3f) 18
\(\begin{array}{lll}5 & 18 & 23\end{array}\)
45
\(\begin{array}{lll}8 & \frac{8}{31} & 16\end{array}\)
2825
53
\(\begin{array}{lll}4 a) & 2 & \\ 8 & 5 & 13 \\ & 7 & \end{array}\)
4b) \begin{tabular}{ll}
1 & \\
12 & 6 \\
\hline
\end{tabular}
\(\begin{array}{lll}4 \mathrm{c}) & 3 \\ 9 & 7 & \\ & 7 \\ & 10\end{array}\)
4d) 2
4e) 9
\(\begin{array}{rrr}18 & 6 & 24 \\ & 8 & \end{array}\)
25631
13) MAGIC SQUARES la) _ _ 15 'Nine Square' (Answers shown).

1b) \({ }^{8} \frac{-}{3}\)
1c) \(\begin{gathered}3 \\ 1110\end{gathered}\)
11 _ 20
17 _
1d) \begin{tabular}{l}
\(0-8\) \\
\(3-17\) \\
\\
3 \\
\\
\hline \(177_{-}\)
\end{tabular}
1e) \(\begin{array}{lll}\overline{3} & 8 & 19 \\ & 18 \\ & 23 & \end{array}\)
1f) 016 \(-14^{0} \quad 14\)

1g) \(\begin{array}{ccc}8 & 2 & \\ & -11 & 32 \\ & - & 42\end{array}\)
(i) \(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\)
1h) \({ }^{6} 6^{-}-\)
\(22 \overline{9} \overline{3}\)

000

\[
\begin{aligned}
& \left.\begin{array}{llll}
\text { 4) } & - & 13 \\
\text { (34) } & - & 2 & 7 \\
- & - & 9 \\
& - & 2 & 6
\end{array} \right\rvert\, \\
& \text { 5) } \begin{array}{ll} 
& \overrightarrow{5}-3 \\
\text { (34) } & -10 \\
& \overline{4} \overline{1} 4-\overline{1}
\end{array}
\end{aligned}
\]
15) MAGIC SQUARES Magic number \(=369\)
(9x9) Missing Numbers: \(\quad\) Row \(1=76, \quad\) Row \(2=65,24\)
Row \(3=64,53 \quad\) Row \(4=22,62,83\) Row \(5=1\)
Row \(6=30,10 \quad\) Row \(7=18 \quad\) Row \(8=78,7,28\)
Row \(9=67,36\)
16) CLUELESS Many answers - let children discuss and check.
17) MAGIC SQUARES (A) Row \(1=1,9,27\), Row \(5=30,25,18\)
(5 X 5)
(B) Row \(1=3,13,28 \quad\) Row \(3=26,21\)
Row \(5=8,12,2\)
18) Consecutive 50's Promote discussion and let the children check their answers - much mathematical discussion and checking will result.
19) MAGIC CIRCLES Missing Numbers: \(5 \quad 4 \quad 1\)

3
20) MAGIC CIRCLES 2 Children check their own.
21) 0-9 CARDS
\(16=9 \div 7 \quad 14=8+6 \quad 2=0+2 \quad 9=4+5 \quad 4=3 \div 1\)
\(11=9+2 \quad 10=7+3 \quad 9=5+4 \quad 8=8+0 \quad 7=6+1\)
22) 0-9 GRIDS
\begin{tabular}{llllllll}
4 & 5 & 2 & 8 & 6 & 3 & 0 & 4 \\
6 & 9 & 4 & 7 & 3 & 5 & 1 & 9 \\
& & & & 6 & 2 & 8
\end{tabular}
23) 0-9 CARDS Children discuss and check.
24) INVESTIGATIONS Children discuss and check.
25) MULTIPLICATION Children check.

TABLES
- mixed up grid
26) SPEED TEST Ist Column \(48,45,72,42,16,30,24,21,70,0,54,18,15,36,0,49\), 8, 36, 56, 18, 40, 45, 42, 36, 27.

2nd Column 27, 24, 63, 36, 48, 21, 40, 28, 20, 54, 35, 32, 24, 45, 42, \(30,72,56,36,49,20,54,25,24,56\).
27)

\section*{MULTIPLICATION
CROSSES}


1d) \(\begin{aligned} & 6 \\ & 5-\end{aligned}\)
1h)
\[
-\overline{-}_{60} 40
\]
28) MULTIPLICATION Missing Numbers
GRIDS
1) Row \(2=12\)
2) \(\operatorname{Row} 3=10\)
3) Row \(2=10\)
\[
\begin{array}{lll}
\text { Row } 3=10 & \text { Row } 4=21 & \text { Row } 3=3 \\
\text { Row } 4=28
\end{array}
\]
4) Row \(2=2,4\)
Row \(3=18\)
5) Row \(1=4\)
6) Row \(1=1\)
Row \(2=3\)
Row \(2=40,5\)
Row \(3=48\)
7) Row \(1=2,7\)
8) Row \(1=6,5\)
9) Row \(1=3,7\)
Row \(2=1,3\)
Row \(2=1\)
Row \(2=3\)
Row \(3=2,14\)
Row \(3=2\)
Row \(3=7\)

Row \(4=5,15,35\)
29)

0-9 CARDS Multiples of 2: \(18,56,72,84,90\)
Multiples of 3: 3, \(9,12,45,60,78\)
NB Many answers
Multiples of 7: \(14,28,35,49,70\)
30) 0-9 CARDS Children check their group's answers.
31) TABLE CODES

Reads : TABLES ARE FUN
BEST COPY AVAILABLE
32) 0-9 CARDS Many answers - let children discuss and check.
33) I TO 9 CARDS, Many answers - let children discuss and check
34) The answer is \(\qquad\) Many answers - let chiddren discuss and check
36) SPELLINGS

37) NUMBER Children check.

VALUES
38) \(\begin{array}{llllllllll}\text { IS THIS } & \text { 1) } \mathrm{N} & \text { 2) } \mathrm{N} & \text { 3) } \mathrm{N} & \text { 4) } \mathrm{Y} & \text { 5) } \mathrm{N} & 6) \mathrm{Y} & \text { 7) } \mathrm{N} & \text { 8) } \mathrm{Y} & \text { 9) } \mathrm{N} \\ \text { POSS!BLE } & 10\end{array} \mathrm{Y}\)


REPRODUCTION RELEASE
(Specific Document)
I. DOCUMENT IDENTIFICATION:

II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper eph, and alectrcnicioptical media, and sold through the ERIC Document Reproduction Service (EDRS) or other ERIC vendors. Credit is given to the source of each document. and, if reproduction release is granted, one of the following notices is attixed to the document.

If permission is granted to reproduce the identified document, please CHECK CNE of the following options and sign the release below.


Check here
Permitting microfiche \(\left(4^{\circ} \times 6^{-}(14 \mathrm{~m})\right.\), paper copy. electronic, and optical media reproduction.

Sample sticker to be affixed to document
PERMISSION TO REPRODUCE THIS MATERIAL HAS GEN GRANTED BY


To Tic educational resources INFORMATION CENTER (ERIC)"

Sample sticker to be affixed to document \(\square\)

or here
Permitting reproduction in other than paper copy.

Level 1
Level 2
Sign Here, Please
Documents will be processed as indicated provided reproduction quality permits. If permission to reproduce is granted, but neither box is checked, documents will be processed at Level 1.

 indicated above. Reproduction from the ERIC microfiche or electroniclopticat media by persons other than ERIC employees and lis system contractors requires permission from the copyright holder. Exception is made for nonprofit reproduction by toraries and other service agencies to satisfy information needs of educators in response to discrete inquiries."```

